Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions
نویسندگان
چکیده
The advantage of 2D-3D image registration methods versus direct image-to-patient registration, is that these methods generally do not require user interaction (such as manual annotations), additional machinery or additional acquisition of 3D data. A variety of intensity-based similarity measures has been proposed and evaluated for different applications. These studies showed that the registration accuracy and capture range are influenced by the choice of similarity measure. However, the influence of the optimization method on intensity-based 2D-3D image registration has not been investigated. We have compared the registration performance of seven optimization methods in combination with three similarity measures: gradient difference, gradient correlation, and pattern intensity. Optimization methods included in this study were: regular step gradient descent, Nelder-Mead, Powell-Brent, Quasi-Newton, nonlinear conjugate gradient, simultaneous perturbation stochastic approximation, and evolution strategy. Registration experiments were performed on multiple patient data sets that were obtained during cerebral interventions. Various component combinations were evaluated on registration accuracy, capture range, and registration time. The results showed that for the same similarity measure, different registration accuracies and capture ranges were obtained when different optimization methods were used. For gradient difference, largest capture ranges were obtained with Powell-Brent and simultaneous perturbation stochastic approximation. Gradient correlation and pattern intensity had the largest capture ranges in combination with Powell-Brent, Nelder-Mead, nonlinear conjugate gradient, and Quasi-Newton. Average registration time, expressed in the number of DRRs required for convergence, was the lowest for Powell-Brent. Based on these results, we conclude that Powell-Brent is a reliable optimization method for intensity-based 2D-3D registration of x-ray images to CBCT, regardless of the similarity measure used.
منابع مشابه
A review of 3D/2D registration methods for image-guided interventions
Registration of pre- and intra-interventional data is one of the key technologies for image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy, and interventional radiology. In this paper, we survey those 3D/2D data registration methods that utilize 3D computer tomography or magnetic resonance images as the pre-interventional data and 2D X-ray projection images as the...
متن کاملFast voxel-based 2D/3D registration algorithm using a volume rendering method based on the shear-warp factorization
2D/3D registration makes it possible to use pre-operative CT scans during X-ray fluoroscopy guided interventions for navigation purposes. For this registration task a fast voxel-based method is presented, which uses a recently introduced similarity measure (pattern intensity). This measure is especially suitable for 2D/3D registration, because it is robust with respect to structures as, for ins...
متن کاملAn Iterative Framework for Improving the Accuracy of Intraoperative Intensity-Based 2D/3D Registration for Image-Guided Orthopedic Surgery
We propose an iterative refinement framework that improves the accuracy of intraoperative intensity-based 2D/3D registration. The method optimizes both the extrinsic camera parameters and the object pose. The algorithm estimates the transformation between the fiducials and the patient intraoperatively using a small number of X-ray images. The proposed algorithm was validated in an experiment us...
متن کاملIntensity-based 2D-3D spine image registration incorporating a single fiducial marker.
RATIONALE AND OBJECTIVES The two-dimensional (2D)-three dimensional (3D) registration of a computed tomography image to one or more x-ray projection images has a number of image-guided therapy applications. In general, fiducial marker-based methods are fast, accurate, and robust, but marker implantation is not always possible, often is considered too invasive to be clinically acceptable, and en...
متن کاملFast Intensity-based 2D-3D Image Registration of Clinical Data Using Light Fields
Registration of a preoperative CT (3D) image to one or more X-ray projection (2D) images, a special case of the pose estimation problem, has been attempted in a variety of ways with varying degrees of success. Recently, there has been a great deal of interest in intensity-based methods. One of the drawbacks to such methods is the need to create digitally reconstructed radiographs (DRRs) at each...
متن کامل